
# 附件7: 土壤检测报告

标识: WZKXCMA-QR-93



吴科信委托字[2022]第 1900 号



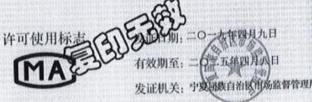
 委托单位:
 宁夏京成天宝科技有限公司

 检测单位:
 吴忠市科信环境检测有限公司

 检测类型:
 委托检测

 报告日期:
 2022 年 11 月 30 日




# 验验检测机构 资质认定证书

证书编号: 193013050280

名称: 吴忠市科信环境检测有限公

地址: 吴忠市利通区友谊西路 1020#

经审查,你机构已具备国家有关法律、行政法规规定的基本条件和能力,现予批准,可以向社会由具具有证明作用的数据和结果夏蒙城(灾寒、釋撲、有限公司令 炮测模曲 费用认证。 检验检测能力及授权签字人见证书附表。



193012050280

本证书由国家认证认可监督管理委员会监制,在中华人民共和国境内有效。

技术负责人: 李 梅

质量负责人: 贾 涛

报告审核人: 江海红

报告编写: 苏治兰

参加人员:马秀萍 贾 艳 叶 倩 杨 帆 杨新宁

杨东

报告编制单位:吴忠市科信环境检测有限公司检测专用章

and the second s

# 检测报告说明

- 1、报告无本公司检测专用章、 **MA** 章和骑缝章无效。
- 2、报告内容需填写齐全,无审核、签发者签字无效。
- 3、报告需填写清楚,涂改无效。
- 4、检测委托方如对检测报告有异议,须于收到本检测报告 之日起十五日内向我公司提出,逾期不予受理。
- 5、由委托单位自行采集的样品,仅对送检样品检测数据负责,不对样品来源负责。无法复现的样品,不受理申诉。
- 6、本报告未经同意不得用于广告宣传。
- 7、未经同意,不得复制本报告。

报告编制单位: 吴忠市科信环境检测有限公司

电 话: 0953-2618599

地 址: 吴忠市利通区友谊西路 1020#

#### 一、前言

受宁夏京成天宝科技有限公司委托,吴忠市科信环境检测有限公司于 2022 年 11 月 10 日组织专业技术人员对宁夏京成天宝科技有限公司土壤进行采样及实验室分析,编制此报告。

### 二、土壤监测内容

#### 2.1 土壤采样点的布设

本次评价布设5个土壤检测点位。具体点位参见表2-1。

点位坐标 检测因子 样品编号 检测点位置 序号 E: 105° 52' 48" 成品车间 069TRB2211-10-1 N: 37°54′ 16″ 1 北门 E: 105° 52' 51" 原料库 069TRB2211-10-2 N: 37°54' 17" " 2 西门口 pH、镉、汞、砷、 E: 105\* 52' 51" 069TRB2211-10-3 铜、铅、镍、氰化 危废库南侧 N: 37°54′ 12" 3 物共8项 E: 105° 52' 45" 069TRB2211-10-4 生活区土壤 4 N: 37°54' 18" E: 105° 52′ 43" 069TRB2211-10-5 参照点 N: 37°54' 19" 5 备注 1.B: 代表表层 0-0.2m

表 2-1 土壤检测采样点

#### 2.2 检测时间及频

检测一次。

#### 2.3 土壤检测分析方法

土壤样品的分析项目及方法执行《土壤环境检测技术规范》 (HJ/T166-2004)规定的方法进行采样分析,具体分析方法见下表 2-2。

表 2-2 土壤检测分析方法

| 序号 | 监测项目 | 分析方法及依据                     | 检出限<br>(mg/kg) | 分析仪器             | 检定/校准<br>有效期            |
|----|------|-----------------------------|----------------|------------------|-------------------------|
| 1  | 汞    | 《土壤质量 总汞、总砷、<br>总铅的测定 原子荧光法 | 0.002          | AFS200T<br>原子荧光光 | 2021.12.8<br>-2022.12.7 |

| 序号 | 监测<br>项目    | 分析方法及依据                                                                  | 检出限<br>(mg/kg) | 分析仪器                          | 检定/校准<br>有效期                  |
|----|-------------|--------------------------------------------------------------------------|----------------|-------------------------------|-------------------------------|
|    |             | 第1部分:土壤中总汞的测<br>定》<br>(GB/T 22105.1-2008)                                |                | 度计                            |                               |
| 2  | 砷           | 《土壤质量 总汞、总砷、<br>总铅的测定 原子荧光法<br>第2部分:土壤中总砷的测<br>定》<br>(GB/T 22105.2-2008) | 0.01           | 3000                          |                               |
| 3  | 镉           | 《土壤质量 铅、镉的测定<br>石墨炉原子吸收分光光度                                              | 0.01           |                               | 1 14                          |
| 4  | 铅           | 法》<br>(GB/T 17141-1997)                                                  | 0.1            |                               | les.                          |
| 5  | 镍           | 《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原<br>子吸收分光光度法》<br>(HJ 491-2019)                   | 3              | YH-AA2053<br>AH 原子吸收<br>分光光度计 | 2020.12.17<br>-2022.12.1<br>6 |
| 6  | 铜           | 《土壤和沉积物 铜、锌、铅、镍、铬的测定 火焰原<br>子吸收分光光度法》<br>(HJ 491-2019)                   | 1              |                               |                               |
| 7  | pH<br>(无量纲) | 《土壤 pH 的测定 电位<br>法》<br>(HJ962-2018)                                      |                | pHBJ-260<br>便携式 pH 计          | 2022.7.25                     |
| 8  | 氰化物         | 《土壤氰化物和总氰化物的测定 分光光度法》<br>(HJ 704-2015)                                   | 0.01           | 7230G<br>分光光度计                | -2023.7.24                    |

#### 2.4 质量保证和质量控制措施

- 1.为保证检测数据准确、可靠,在土样采集、消解、实验室分析 的全过程中均执行《建设用地土壤污染风险管控和修复 监测技术导 则》(HJ25.2-2019)的要求。
- 2.检测分析方法采用国家有关部门颁布的标准分析方法,检测人 员均持证上岗,所有仪器均经过计量部门检定。
- 3.实验室分析中采取自控和他控措施。土壤平行样不少于 20% (5 个样品必须做 1 个平行样)。土壤质控措施结果见下表 2-3。

表 2-3 土壤检测质控数据表

|    | A CALLED AND SERVICE | 样品数 | 他控      | 自控      | 合格率 |
|----|----------------------|-----|---------|---------|-----|
| 序号 | 检测项目                 | (个) | 标准样品(个) | 平行样品(个) | (%) |
| 1  | 汞                    | 5   | 1       | 1       | 100 |
| 2  | 神                    | 5   | 1       | 1       | 100 |
| 3  | 镉                    | 5   | 1       | 1       | 100 |
| 4  | 镍                    | 5   | 1       | 1       | 100 |
| 5  | 氰化物                  | 5   | 1       | 1       | 100 |
| 6  | 铅                    | 5   | 1       | 1       | 100 |
| 7  | pН                   | 5   | 1       | 1       | 100 |
| 8  | 铜                    | 5   | 1       | 1       | 100 |

### 2.5 土壤检测结果

土壤检测结果见下表 2-4。

表 2-4 土壤检测结果

单位(mg/kg)

| 委托         | 单位                  |       |             | 宁夏                | 京成天:            | 宝科技            | 有限公司             |              |      |
|------------|---------------------|-------|-------------|-------------------|-----------------|----------------|------------------|--------------|------|
| 样品         | 类型                  |       |             |                   |                 | 土壌             |                  |              |      |
| 执行         | 标准                  | (     | 土壤环境<br>(GI | 克质量 建<br>336600-2 | 设用地占<br>018)表 1 | 上壤污染<br>及表 2 第 | 风险管控标:<br>第二类用地質 | 准》(试行<br>i选值 | •    |
| 采样         | 日期                  |       |             |                   | 2022 年          | 11月1           | 0日               |              |      |
| 样品         |                     | 汞     | 砷           | 镉                 | 铅               | 镍              | pH<br>(无量網)      | 铜            | 氰化物  |
| 成品车间<br>北门 | 069TRB2<br>211-10-1 | 0.066 | 7.88        | 0.99              | 11.8            | 36             | 8.22             | 15           | 0.77 |
| 原料库<br>西门口 | 069TRB2<br>211-10-2 | 0.563 | 40.8        | 3.33              | 63.8            | 48             | 8.43             | 104          | 0.71 |
| 危废库<br>南侧  | 069TRB2<br>211-10-3 | 0.230 | 26.1        | 3.22              | 69.4            | 53             | 8.14             | 45           | 0.80 |
| 生活区土壤      | 069TRB2<br>211-10-4 | 0.064 | 3.99        | 1.76              | 26.3            | 33             | 7.92             | 16           | 0.67 |
| 参照点        | 069TRB2<br>211-10-5 | 0.087 | 2.30        | 0.75              | 19.4            | 24             | 8.26             | 14           | 0.58 |
| 标准         | 限值                  | 38    | 60          | 65                | 800             | 900            | -                | 18000        | 135  |

结论: 本次所有指标检测结果均符合《土壤环境质量 建设用地 土壤污染风险管控标准》(试行)(GB36600-2018)表1第二类用地筛 选值。

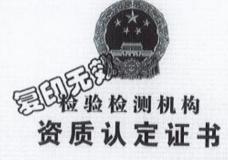
报告编制: 孤谐 审 核: Mon

日期: 2022、11-30 日期: 7022/1-30

## 附件 8: 地下水检测报告

标识: WZKXCMA-QR-93

19年夏景成天宝科技有限公司 综合回收技术改造项目 检测报告


吴科信委托字[2022]第 2091 号



委托单位: 宁夏京成天宝科技有限公司

检测单位: 吴忠市科信环境检测有限公司

报告日期: \_\_\_\_\_\_2022年12月29日



证书编号: 193012050280

名称: 吴忠市科信环境检测有限公

地址: 吴忠市利通区友谊西路 1020年

经审查,你机构已具备国家有关法律、行政法规规定的基

宁复京成灾宝科技有限公司-检测报告专用用的数

检验检测能力及授权签字人见证书附表。

许可使用标志 国 医动外病,二

HARMATER:

发证机关。宁夏国族自治区市岛监督管理厅

193012050280

**李证书由国家认证认可监督管理委员会监制。在中华人民共和国境内有效。** 

技术负责人: 李 梅

质量负责人: 贾 涛

报告审核人: 江海红

报告编写:丁小娟

参加人员:杨新宁 丁 辉 许家伟 杨 东 常泽凯 贾 艳 任学香 叶 倩 马秀萍 苏治兰 马小兰 张 丹 仇小菊

报告编制单位:吴忠市科信城境检测有限公司

Se la se

# 检测报告说明

- 1、报告无本公司检测专用章、 **MA** 章和骑缝章无效。
- 2、报告内容需填写齐全,无审核、签发者签字无效。
- 3、报告需填写清楚,涂改无效。
- 4、检测委托方如对检测报告有异议,须于收到本检测报告 之日起十五日内向我公司提出,逾期不予受理。
- 5、由委托单位自行采集的样品,仅对送检样品检测数据负责,不对样品来源负责。无法复现的样品,不受理申诉。
- 6、本报告未经同意不得用于广告宣传。
- 7、未经同意,不得复制本报告。

吴忠市科信环境检测有限公司

电 话: 0953-2618599

地 址: 吴忠市利通区友谊西路 1020#

吴忠市科信环境检测有限公司

表 5-1 地下水检测点位及检测内容

| 序号 | 检测时间       | 检测点位   | 样品编号             | 检测因子                 |
|----|------------|--------|------------------|----------------------|
| 1  |            | 地下水监   | 069DX2211-10-1-1 |                      |
| 1  |            | 测井 1#  | 069DX2211-10-1-2 | pH、浑浊度、总硬度、浴         |
| 2  | 2022.11.10 | 地下水监   | 069DX2211-10-2-1 | 解性总固体、硫酸盐、氯          |
| 4  | 2022.11.10 | 测井 2#  | 069DX2211-10-2-2 | 化物、铁、锰、铜、锌、          |
| 3  |            | 地下监测   | 069DX2211-10-3-1 | 挥发酚、阴离子表面活性          |
| 5  |            | 井 3#   | 069DX2211-10-3-2 | 剂、耗氧量、石油类、氨          |
| 4  |            | 地下水监   | 069DX2211-11-1-1 | 氮、硫化物、总大肠菌群          |
| 3  |            | 测井 1#  | 069DX2211-11-1-2 | 亚硝酸盐、硝酸盐、氟化          |
| 5  | 2022.11.11 | 地下水监   | 069DX2211-11-2-1 | 物、氰化物、砷、汞、硒          |
| 2  | 2022.11.11 | 测井 2#  | 069DX2211-11-2-2 | 铬(六价)、铅、镉、镍<br>铝共29项 |
| 6  |            | 地下监测   | 069DX2211-11-3-1 | 和共 29 项              |
| O  |            | 井 3#   | 069DX2211-11-3-2 |                      |
| 备注 | 镍、铝由我么     | 公司委托给宁 | 夏测衡联合实业有限<br>附件。 | 公司进行检测, 检测结果见        |

#### 5.2 检测时间、频次

2022年11月10-11日,检测2天,1天2次。

#### 5.3 检测分析方法

执行国家标准方法。具体检测分析方法见表 5-2。

表 5-2 地下水检测分析方法

| 序号 | 项目           | 分析方法                                                     | 检出限<br>(mg/L)         | 分析仪器                  | 校准/检定<br>有效期            |
|----|--------------|----------------------------------------------------------|-----------------------|-----------------------|-------------------------|
| 1  | pH<br>(无量纲)  | 《水质 pH值的测定 电<br>极法》 (HJ1147-2020)                        | 1                     | pHBJ-260<br>便携式pH计    |                         |
| 2  | 浑浊度<br>(NTU) | 《水质 浊度的测定 浊<br>度计法) (HJ1075-2019)                        | 0.3                   | WZB-171便<br>携式浊度仪     |                         |
| 3  | 阴离子表面<br>活性剂 | 《水质 阴离子表面活性<br>剂的测定 亚甲蓝分光光<br>度法》(GB/T7494-1987)         | 0.05                  | 7230G<br>分光光度计        |                         |
| 4  | 总大肠菌群        | 总大肠菌群 多管发酵法<br>《水和废水监测分析方法》<br>(第四版增补版)国家环境<br>保护总局2002年 | <3<br>(MPN/<br>100ml) | SPX-150BE<br>生化培养箱    | 2022.7.25<br>-2023.7.24 |
| 5  | 石油类          | 《水质 石油类和动植物油的测定 紫外分光光度法<br>(试行)》HJ970-2018               | 0.01                  | 752N<br>紫外可见分<br>光光度计 |                         |
| 6  | 硫化物          | 《水质 硫化物的测定 亚<br>甲基蓝分光光度法》                                | 0.003                 | 7230G<br>分光光度计        |                         |

|    |                                  | (HJ1226-2021)                                                                                                                                      |                 |                              |                          |
|----|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------|--------------------------|
| 7  | 溶解性总固体                           | 《生活饮用水标准检验方<br>法 感官性状和物理指标<br>8.1溶解性总固体 称量法》<br>(GB/T5750.4-2006)                                                                                  | -               | CP114<br>电子天平                |                          |
| 8  | 挥发性酚类<br>(以苯酚<br>计)              | 《水质 挥发酚的测定 4-<br>氨基安替比林分光光度法》<br>(HJ503-2009)                                                                                                      | 0.0003          |                              |                          |
| 9  | 氰化物                              | 《水质 氰化物的测定 容<br>量法和分光光度法》<br>(HJ484-2009)                                                                                                          | 0.001           | 7230G<br>分光光度计               |                          |
| 10 | 铬 (六价)                           | 《水质 六价铬的测定 二<br>苯碳酰二肼分光光度法》<br>(GB/T7467-1987)                                                                                                     | 0.004           |                              |                          |
| 11 | 氨氮                               | 《水质 氨氮的测定 纳氏<br>试剂分光光度法》<br>(HJ 535-2009)                                                                                                          | 0.025           | 7230G<br>分光光度计               |                          |
| 12 | 总硬度<br>(以CaCO <sub>3</sub><br>计) | 《水质 钙和镁总量的测<br>定EDTA滴定法 》<br>(GB/T7477-1987)                                                                                                       | 0.05<br>(mmol/L | 数星八15                        | 2021.5.17                |
| 13 | 耗氣量                              | 《水质 高锰酸盐指数的测<br>定 酸性法》<br>(GB/T11892-1989)                                                                                                         | 0.5             | 容量分析                         | -2024.5.16               |
| 14 | 铁                                | 《水质 铁、锰的测定 火焰<br>原子吸收分光光度法》                                                                                                                        | 0.03            |                              |                          |
| 15 | 锰                                | (GB/T 11911-1989)                                                                                                                                  | 0.01            |                              |                          |
| 16 | 铜                                | 《水质 铜、锌、铅、镉的                                                                                                                                       | 0.05            |                              |                          |
| 17 | 锌                                | 測定 原子吸收分光光度<br>法》 (GB/T7475-1987)                                                                                                                  | 0.05            | YH-AA2053AH<br>原子吸收分<br>光光度计 | 2020.12.17<br>2022.12.16 |
| 18 | 铅                                | 铜、铅、镉 石墨炉原子吸<br>收分光光度法《水和废水检                                                                                                                       | 0.001           | 76767611                     |                          |
| 19 | 镉                                | 測分析方法》(第四版) 国<br>家环境保护总局(2002年)                                                                                                                    | 0.0001          |                              |                          |
| 20 | 氯化物                              | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,                                                                                                            | 0.007           |                              |                          |
| 21 | 硫酸盐                              | 《水质 无机阴离子 (F.、                                                                                                                                     | 0.018           |                              |                          |
| 22 | 硝酸盐<br>(以N计)                     | Cl·、NO <sub>2</sub> ·、Br·、NO <sub>3</sub> ·、PO <sub>4</sub> <sup>3</sup> ·、<br>SO <sub>3</sub> <sup>2</sup> 、SO <sub>4</sub> <sup>2</sup> ·)的測定 离子 | 0.004           | CIC-D160离<br>子色谱仪            | 2021.12.8<br>-2023.12.7  |
| 23 | 氟化物                              | 色谱法》 HJ84-2016                                                                                                                                     | 0.006           |                              |                          |
| 24 | 亚硝酸盐                             | C-2500000                                                                                                                                          | 0.005           |                              |                          |
| 25 | 汞                                | 《水质 汞、砷、硒、铋和                                                                                                                                       | 0.00004         | AFS200T                      | 2021.12.8                |
| 26 | 静                                | 锑的测定 原子荧光法》                                                                                                                                        | 0.0003          | 原子荧光光                        | -2022.12.7               |
| 27 | 硒                                | (HJ694-2014)                                                                                                                                       | 0.0004          | 度计                           |                          |

表 5-4 地下水检测结果

| 1   | お な 本 な な              |                   |                  |                   |                                   |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|------------------------|-------------------|------------------|-------------------|-----------------------------------|-------------------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| - 1 | 安託単位                   |                   |                  | 宁夏京               | 宁夏京成天宝科技有限公司                      | 長公司               |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| - 1 | 执行标准                   |                   | ()               | 地下水质量标准           | 《地下水质量标准》(GB/T14848-2017)的III 类标准 | 2017)的田業株2        | 类                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 采样时间                   |                   |                  | 2022 年 1          | 2022年11月10日                       |                   |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 鄅                      | 地下水               | 地下水监测井 1#        | 地下水               | 地下水监测井 2#                         | 地下水山              | 地下水监测井3#         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nho | Ale I                  | E: 105°52'48"; N: | .; N: 37°54'8"   | E: 105°52'46"; N: | : N: 37°54'13"                    | E: 105°52'55"; N: | N: 37°54′13"     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | 水位 (m)                 | E                 | 7.8              |                   | 2                                 | 2                 |                  | - 标准限值                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | (田) 紫朱                 |                   | 6                |                   | 9                                 | I                 | 12               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 样品编号                   | 069DX2211-10-1-1  | 069DX2211-10-1-2 | 069DX2211-10-2-1  | 069DX2211-10-2-2                  | 069DX2211-10-3-1  | 069DX2211-10-3-2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | ) Hd                   | 7.2               | 7.1              | 7.5               | 7.6                               | 8.0               | 8.0              | 6 5 <nh<8 5<="" td=""></nh<8>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | 溶解性总固体 (mg/L)          | 27785             | 27813            | 15321             | 15797                             | 17667             | 17672            | <1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 挥发性酚类<br>(以苯酚计) (mg/L) | 0.0003L           | 0.0003L          | 0.0003L           | 0.0003L                           | 0.0003L           | 0.0003L          | ≤0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | 版                      | 0.001L            | 0.001L           | 0.001L            | 0.001L                            | 0.001L            | 0.001L           | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 幣(六价)(mg/L)            | 0.004L            | 0.004L           | 0.018             | 0.018                             | 0.006             | 0.006            | <0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 氨氮 (mg/L)              | 0.779             | 0.798            | 12.0              | 11.7                              | 22.6              | 23.1             | 05.0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | 总硬度<br>(以CaCOs计)(mg/L) | 4327              | 4319             | 2757              | 2741                              | 736               | 743              | <450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 耗氧量 (mg/L)             | 36.1              | 36.0             | 7.3               | 7.2                               | 800               | 8.7              | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | 铁 (mg/L)               | 0.21              | 0.23             | 80.0              | 0.08                              | 0.05              | 0.05             | <0.50<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.30<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00<br><0.00 |
|     | 程 (mg/L)               | 90.0              | 90.0             | 0.01              | 0.01                              | 0.01L             | 0.01L            | <0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | ~                      | 90.0              | 90.0             | 0.05L             | 0.05L                             | 0.05L             | 0.05L            | <1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | -                      | 1.82              | 1.88             | 86.0              | 96.0                              | 0,39              | 0.40             | <1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| _   | × 1                    | 0.00049           | 0.00049          | 0.00026           | 0.00028                           | 0.00026           | 0.00026          | ≥ 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 神 (mg/L)               | 0.0043            | 0.0043           | 0.0024            | 0.0024                            | 0.0024            | 0.0024           | ≥0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

 以忠
 和科 信
 年 境 校 測 有
 限 公 可

第 25 页

| <0.01    | ≤0.01    | <0.005   | <250       | ≤250       | \$20.0         | ≤1.0       | ≥1.00       | Ø         | ≤0.3               | 53.0                 |            | ≤0.02      |           | 标希限值                 | 6.5≤pH<8.5 | ≥1000         | ≤0.002                 | <0.05      | <0.05        | ≤0.50     |
|----------|----------|----------|------------|------------|----------------|------------|-------------|-----------|--------------------|----------------------|------------|------------|-----------|----------------------|------------|---------------|------------------------|------------|--------------|-----------|
| 0.0016   | 0.068    | 0.0168   | 5108       | 4935       | 192            | 7.58       | 0.005L      | 0.5       | 0.07               | ۵                    | 80.0       | 0.003      |           | 069DX2211-<br>11-3-2 | 8.0        | 16872         | 0,0003L                | 0.001L     | 900'0        | 22.7      |
| 0.0017   | 0.067    | 0.0166   | 5170       | 4945       | 190            | 7.49       | 0.005L      | 0.5       | 0.07               | ۵                    | 0.11       | 0.003      |           | 069DX2211-<br>11-3-1 | 8.1        | 16778         | 0.0003L                | 0.001L     | 9000         | 22.2      |
| 0.0010   | 0.086    | 0.0190   | 2782       | 6268       | 17.0           | 6.63       | 1.10        | 9.0       | 90:0               | Q                    | 0.24       | 900.0      | 月11日      | 069DX2211-<br>11-2-2 | 7.5        | 15107         | 0.0003L                | 0.001L     | 0.017        | 11.9      |
| 0.0000   | 0.083    | 0.0190   | 2762       | 6265       | 16.9           | 89.9       | 1.16        | 9.0       | 90.0               | ۵                    | 0.26       | 0.005      | 2022 年 11 | 069DX2211-<br>11-2-1 | 7.5        | 14957         | 0.0003L                | 0.001L     | 0.016        | 12.2      |
| 900000   | 0.084    | 0.0197   | 5398       | 15385      | 61.9           | 21.1       | 5.36        | 1.0       | 0.05               | Δ                    | 0.41       | 0.003L     |           | 069DX2211-<br>11-1-2 | 7.1        | 27073         | 0.0003L                | 0.001L     | 0.004L       | 0.773     |
| 900000   | 0.080    | 0.0198   | 5345       | 15905      | 8.65           | 21.1       | 5.06        | 6.0       | 0.05L              | 4                    | 0.44       | 0.003L     |           | 069DX2211-<br>11-1-1 | 7.0        | 29873         | 0.0003L                | 0.001L     | 0.004L       | 0.751     |
| 項 (mg/L) | 铅 (mg/L) | 續 (mg/L) | 氨化物 (mg/L) | 硫酸盐 (mg/L) | 硝酸盐(以N计)(mg/L) | 氟化物 (mg/L) | 亚硝酸盐 (mg/L) | 斯斯斯 (NTU) | 网离子表面活性剂<br>(mg/L) | 总大肠歯群<br>(MPN/100ml) | 石油类 (mg/L) | 施名物 (mg/L) | 米林四回      | - 李明 - 李             | pH (无量級)   | 游解性总固体 (mg/L) | 挥发性酚类<br>(以苯酚计) (mg/L) | 無化物 (mg/L) | 帮(小价) (mg/L) | 氨氮 (mg/L) |
| 15       | 16       | 17       | 18         | 19         | 20             | 21         | 22          | 23        | 24                 | 25                   | 26         | 27         |           | 世                    | -          | 2             | m                      | 4          | 10           | 9         |

**吴忠市科信环境检测有限公司** 

第 26 页

|         | 4084 | 4092    | 2760     | 2768          | 752     | 732     | ≤450    |
|---------|------|---------|----------|---------------|---------|---------|---------|
| 36.4    | 4    | 36.5    | 7.4      | 7.4           | 9.3     | 9.2     | 83.0    |
| 0.17    |      | 0.18    | 80.0     | 90'0          | 0.04    | 0.05    | <0.3    |
| 90.0    |      | 0.07    | 0.02     | 0.01          | 0.01L   | 0.01L   | ≤0.10   |
| 0.07    | 1    | 90.0    | 0.05L    | 0.05L         | 0.05L   | 0.05L   | ≤1.00   |
| 1.79    | 1    | 1.76    | 96'0     | 96.0          | 0.36    | 0.37    | ≤1.00   |
| 0.00048 |      | 0.00048 | 0.00027  | 0.00028       | 0.00031 | 0.00025 | ≥ 0.001 |
| 0.0044  | -    | 0.0043  | 0.0024   | 0.0024        | 0.0024  | 0.0024  | ≥ 0.01  |
| 900000  |      | 0.0006  | 0.0010   | 0.0010        | 0.0016  | 0.0018  | <0.01   |
| 0.078   |      | 0.078   | 0.083    | 0.081         | 0.065   | 0.064   | ≤0.01   |
| 0.0199  | +    | 0.0200  | 0.0194   | 0.0191        | 0.0172  | 0.0170  | <0.005  |
| 5370    |      | 5475    | 2755     | 2792          | 5188    | 5137    | <250    |
| 15686   | 4    | 125870  | 6282     | 6255          | 4965    | 4952    | \$250   |
| 9.09    | Н    | 62.9    | 17.2     | 17.1          | 191     | 191     | <20.0   |
| 20.6    | _    | 21.1    | 6.65     | 89'9          | 7.66    | 6.92    | 51.0    |
| 5.22    |      | 5.46    | 1.14     | 1.12          | 0.005L  | 0.005L  | <1.00   |
| 6.0     |      | 6.0     | 9.0      | 9.0           | 0.4     | 0.4     | 0       |
| 0.05L   |      | 0.05    | .07      | 90.0          | 0.07    | 0.07    | ≤0.3    |
| Q       |      | Ø       | Ø        | ۵             | 0       | ۵       | 53.0    |
| 0.41    |      | 0.41    | 0.24     | 0.26          | 80.0    | 0.09    |         |
| 0.003   | H    | 0.003   | 0.007    | 900.0         | 0.003   | 0.004   | <0.02   |
|         |      | 141     | 117年午本弘日 | 聖二 丁之田川并受清京日本 | 日子は上西   |         |         |

吳科信委托字[2022]第2091号

吴忠市科信环境检测有限公司

第 27 页